Refleksi Titik Menggunakan Matriks Transformasi#
Berikut adalah beberapa jenis transformasi refleksi beserta matriksnya dan contoh titik yang direfleksikan.
1. Refleksi terhadap sumbu-\(x\)#
\[\begin{split}
\text{Matriks: }
\begin{bmatrix}
1 & 0 \\
0 & -1
\end{bmatrix}
\end{split}\]
\[\begin{split}
\begin{aligned}
A &= (2, 3) \Rightarrow A' = (2, -3) \\
B &= (-1, 4) \Rightarrow B' = (-1, -4)
\end{aligned}
\end{split}\]
from IPython.display import IFrame
url = "https://www.geogebra.org/calculator/pgpftyjk" # Ganti dengan URL GeoGebra yang valid
IFrame(url, width=800, height=600)
2. Refleksi terhadap sumbu-\(y\)#
\[\begin{split}
\text{Matriks: }
\begin{bmatrix}
-1 & 0 \\
0 & 1
\end{bmatrix}
\end{split}\]
\[\begin{split}
\begin{aligned}
A &= (2, 3) \Rightarrow A' = (-2, 3) \\
B &= (-1, 4) \Rightarrow B' = (1, 4)
\end{aligned}
\end{split}\]
from IPython.display import IFrame
url = "https://www.geogebra.org/calculator/t5hnnkjz" # Ganti dengan URL GeoGebra yang valid
IFrame(url, width=800, height=600)
3. Refleksi terhadap garis \(y = x\)#
\[\begin{split}
\text{Matriks: }
\begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix}
\end{split}\]
\[\begin{split}
\begin{aligned}
A &= (2, 3) \Rightarrow A' = (3, 2) \\
B &= (-1, 4) \Rightarrow B' = (4, -1)
\end{aligned}
\end{split}\]
from IPython.display import IFrame
url = "https://www.geogebra.org/calculator/xtfx88zp" # Ganti dengan URL GeoGebra yang valid
IFrame(url, width=800, height=600)
4. Refleksi terhadap garis \(y = -x\)#
\[\begin{split}
\text{Matriks: }
\begin{bmatrix}
0 & -1 \\
-1 & 0
\end{bmatrix}
\end{split}\]
\[\begin{split}
\begin{aligned}
A &= (2, 3) \Rightarrow A' = (-3, -2) \\
B &= (-1, 4) \Rightarrow B' = (-4, 1)
\end{aligned}
\end{split}\]
from IPython.display import IFrame
url = "https://www.geogebra.org/calculator/qzbvcrhv" # Ganti dengan URL GeoGebra yang valid
IFrame(url, width=800, height=600)
5. Refleksi terhadap titik asal (origin)#
\[\begin{split}
\text{Matriks: }
\begin{bmatrix}
-1 & 0 \\
0 & -1
\end{bmatrix}
\end{split}\]
\[\begin{split}
\begin{aligned}
A &= (2, 3) \Rightarrow A' = (-2, -3) \\
B &= (-1, 4) \Rightarrow B' = (1, -4)
\end{aligned}
\end{split}\]
from IPython.display import IFrame
url = "https://www.geogebra.org/calculator/qzbvcrhv" # Ganti dengan URL GeoGebra yang valid
IFrame(url, width=800, height=600)